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In May 1999 state-of-the-art autonomy technology was 
allowed to assume  command and control  of  the  Deep 
Space  One  spacecraft  during  the  Remote  Agent 
Experiment.  This  experiment  demonstrated  numerous 
autonomy  concepts  ranging  from  high-level  goal- 
oriented  commanding  to  on-board  planning  to  robust 
plan execution  to model-based fault  protection. Many 
lessons of  value  to  future  enhancements  of  spacecraft 
autonomy  were learned in preparing  for and executing 
this experiment.  This paper describes  those lessons  and 
suggests  directions of future work in this field. 

INTRODUCTION 
Robotic  spacecraft  are  making it possible  to  explore 
other  planets  and  understand  the  dynamics, 
composition,  and  history of the bodies  that make up our 
solar  system.  These  spacecraft  enable us to extend  our 
presence into space at a  fraction  of  the  cost and  risk 
associated  with  human exploration.  They also pave the 
way for human exploration.  Where human  exploration 
is desired, robotic precursors can help identify and map 
candidate  landing  sites, find resources, and demonstrate 
experimental  technologies. 

Current  spacecraft  operations  and  control  technology 
relies  heavily on a relatively  large and highly skilled 
mission  operations  team  that  generates  detailed time- 
ordered  sequences  of  commands  or  macros  to  step  the 
spacecraft  through  each  desired  activity.  Each 
sequence is carefully  constructed on the ground in such 
a way as to  ensure  that all known  operational 
constraints  are  satisfied.  The  autonomy  of  the 
spacecraft is limited. 

An alternative  approach to spacecraft commanding and 
control  uses Remote  Agent (RA) software  technology 

and  was  demonstrated  by  the  Remote  Agent 
Experiment  (RAX)  on  the  Deep  Space  One  (DS1) 
spacecraft. In the  Remote  Agent  approach' ' ', Artificial 
Intelligence  (AI)  technology is used  to  encode  the 
operational  rules and constraints in the flight  software. 
The  software  may be considered  to be an autonomous 
"remote agent"  of  the  spacecraft  operators in the sense 
that  the  operators rely on  the  agent  to  achieve particular 
goals. The  operators  do not know the exact  conditions 
on the  spacecraft, so they  do not tell  the  agent exactly 
what to  do  at  each  instant  of  time.  They  do, however, 
tell  the  agent  exactly  which  goals  to  achieve in each 
period  of  time  as  well as how  and  when  to 
communicate  with  the  ground  controllers. 

The DS1 Remote  Agent  Experiment achieved  multiple 
technology  objectives.  A  primary  objective  of  the 
experiment  was  to  provide  an on-board  demonstration 
of  spacecraft  autonomy.  This  demonstration addressed 
nominal  operations,   including  goal-oriented 
commanding,  extended  agency  via  back  to  back 
planning for sequential  periods,  and  closed-loop goal- 
oriented plan execution responding  to both time-driven 
and event-driven  events. In addition,  the  experiment 
demonstrated  extensive  fault  protection  capabilities, 
including failure  diagnosis,  failure recovery  using both 
repair  and  reconfiguration,  on-board  replanning 
following otherwise unrecoverable  failures, and system- 
level fault  protection. 

An equally  important,  and complementary,  objective  of 
the experiment  was  to learn  how to integrate a remote 
agent  into  the  extensive  flight and ground  spacecraft 
control  infrastructure. This  objective  was achieved by a 
three-pronged  approach. First, a  successful on-board 
demonstration  required  integration of the  Remote Agent 
with  the  spacecraft  flight  software.  This  integration 
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between  Remote  Agent  team  members  and DSl 
operations  engineers.  Together,  we  learned  about 
operating a spacecraft  controlled by a remote  agent. 

In May 1999, the  Remote  Agent  Experiment  was 
executed  successfully,  demonstrating  the  applicability 
of  Remote  Agent  technologies  to  spacecraft 
commanding  and  control.  This  experiment in 
spacecraft autonomy  has allowed the  remote agent  team 
to learn many  lessons about  the  technology needed for 
spacecraft  autonomy,  the  process  of  technology 
infusion,  and  some  of  the  obstacles  remaining  before 
spacecraft  with a high level of  autonomy will  be flown. 
The intent of  this paper is to  share  these lessons  with 
the  spacecraft and  Artificial  Intelligence communities 
so that  we may  work  together to address  these issues. 

The  Remote  Agent  was  tremendously  successful in 
showing  what is possible.  A  major  measure  of its 
eventual  success  will  be  the  extent  to  which  our 
communities  are  able  to  apply  what  we've learned  here 
to  future  challenges. We believe  that  highly-capable 
autonomous  spacecraft  are  possible  and  their 
development  can start  soon;  we  also have  quite a bit of 
work still to  do  to make  that  happen. 

BENEFITS FOR MISSIONS 
The real customers for the  capabilities  of  the  remote 
agent  flight  software  are  the  ground  operators. In this 
paper,  we  discuss a number  of  advantages  that  this 
technology  offers from the customer's  point of view. 

High  Level  CommandinP: 

In today's  environment,  the operating  model is that  the 
behavior  of  the  spacecraft in response  to  proposed 
commands  is  predicted  and  understood  at a very 
detailed level. Typically  each  detail is reviewed and 
approved  by  cognizant  representatives  of  each 
subsystem. We propose a paradigm  shift:  create  on- 
board  models  of  flight  rules  and  constraints  and 
command response  behavior.  Send high-level goals  to 
the spacecraft and allow the spacecraft to  create a plan 
that  meets the  goals while  satisfying all constraints. The 
operators  have  the  option  to  simulate  the  planning 
process  ahead of time  and  predict  the  most  likely 
spacecraft  behavior as before.  Eventually, it  is assumed 
that it will be possible to reduce  this  simulation to  spot 
checks  when the  circumstances  are similar to  those that 
the on-board planner has dealt  with  previously. 

Robust  Execution 

Fixed  time-based sequences  are brittle: one unexpected 
problem is sufficient  to  cause  the  sequence  to fail  and 
then the  spacecraft must take  some contingency  action, 
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often switching  to a "Safe"  mode  of  some sort. In the 
remote  agent  approach,  the  "smart  executive" is 
responsible  for executing a plan  rather  than a sequence. 
The  distinction  between a plan and a sequence is that 
the plan contains  not  only  the  required  tasks and the 
desired  execution  times,  but also the  event-relative 
constraints  and  information  on  how  much  flexibility 
each  task has in its requested  start  and  stop times. The 
remote  agent  executive  chooses  items  for  execution 
when all time-  and  event-relative  preconditions  have 
been met.  Once  the  executive  starts a task, it takes 
responsibility  for  its  successful  completion.  If a 
problem  occurs in execution,  the  executive  has  the 
ability  to  retry  the  same  and  different  approaches  to 
achieving a task. 

Extensive  On-Board  Behavioral  Models 

Current  spacecraft  rely  heavily on logical  expressions 
to  make  on-board  decisions.  These may take  many 
forms,  such as: If Message  X  arrives, send  message Y. 
If M > N set Z to  W,  etc.  These  have  the disadvantage 
of  requiring  new  rules  of  each  additional  desired 
behavior. The  remote  agent relies on a combination of 
domain-specific  behavioral  models  plus  general- 
purpose  reasoning  engines. In the  on-board  planner, 
models  include:  state  transitions  required  to  set up a 
target state, resources  required by tasks,  flight  rules and 
constraints, and detailed  numerical  planning  experts 
that can  respond to  specific  queries  such as "How long 
does a turn  from  attitude  X  to  attitude Y take?" For 
fault  protection,  the  remote  agent  uses  models  of  the 
behavior of  the  hardware  and  software in nominal and 
certain  failure  modes. 

TECHNOLOGY 
The  Remote  Agent is formed  by the integration of three 
separate  Artificial  Intelligence  technologies: an on- 
board  planner-scheduler, a robust  multi-threaded 
executive,  and a model-based  fault  diagnosis  and 
recovery system. 

Remote  Apent  Architecture 

The RA architecture and  its  relation to flight software 
are  shown in Figure 1. Viewed as a black-box,  RA 
issues commands  to real-time execution flight  software 
(FSW)  to  modify  spacecraft  state,  and  receives  state 
information  through a set  of monitors (MON) that  filter 
data  streams into a  set  of  abstract properties. The RA 
itself is comprised  of  three  components: a Mission 
Manager (MM), a Planner/Scheduler4 (PS) that  includes 
a Mission  Manager,  (MM),  a  Smart  Executive' 
(EXEC),   and a Mode  Ident i f icat ion  and 

DRAFT 7/1/99 
American  Institute of Aeronautics and Astronautics 



Reconfiguration module‘ (MIR)  also  known  as 
Livingstone. 

Figure 1: RAX Architecture 

MM formulates near-term planning  problems based on 
a long-range mission  profile  representing  the  goals  of 
the  mission. MM extracts goals for the next  scheduling 
horizon,  combines  them  with  a  projected  spacecraft 
state  provided by EXEC,  and  formulates  a  planning 
problem for PS. This  decomposition into long-range 
mission  planning and shorter-term  detailed  planning 
enables RA to  undertake  an  extended  mission with 
minimal  human  intervention. 

PS takes  a  plan  request  from MM and  produces  a 
flexible,  concurrent  temporal  plan  for  execution  by 
EXEC. PS constructs  plans  using  domain  constraints 
and heuristics in its knowledge  base;  planning,  third- 
party software modules  providing  efficient  computation 
for  specialized  problems,  participate in the  planning 
process by requesting new goals  or  answering  queries 
posed by PS. 

EXEC  executes  a plan by decomposing the  high-level 
plan activities  into  primitives,  sending out commands, 
and monitoring progress based on direct feedback from 
the command  recipient or on inferences  drawn by MIR. 
If some task  cannot be achieved,  EXEC may attempt an 
alternate  method or may request a  simple recovery plan 
from Livingstone.  If the EXEC is unable to  execute  or 
repair  the  current plan, it cleanly  aborts  the plan and 
attempts  to bring the  spacecraft into a  safe  state while 
requesting a new plan from MM. 

Livingstone is responsible  for  mode identification  (MI) 
and  mode reconfiguration (MR). MI observes  EXEC 
issuing  commands,  receives  events  from  MON, and 
uses  model-based inference  to  deduce  the  state  of  the 
spacecraft and provide  feedback  to  EXEC. MR serves 
as  a  recovery  expert,  taking as input  a  set  of  EXEC 
constraints  to be established  or  maintained, and uses 
declarative  models it shares  with MI to  recommend  a 
single recovery action to  EXEC. 
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The  RAX  manager,  a  software  task  belonging  to  the 
DS I flight  software,  mediated all communication 
between  the Remote  Agent and the flight  software. 

FLIGHT QUALIFICATION 
One  of  the  most  difficult  challenges  facing  systems 
offering  increased autonomy is that  of demonstrating to 
the satisfaction of  technologists and  customer alike that 
the software will behave  acceptably in a wide variety of 
situations  for  which it will not be pre-tested. 

The remote agent  has  approached  the qualification issue 
from a number of fronts: 

Our  primary  testing  approach  was  to  exercise  the RA 
on scenarios  clustered  around  our  expected experiment 
baseline.  These  were  performed on platforms of varying 
fidelity. This proved effective for  our  experiment, but it 
is sensitive to changes in the baseline. 

Formal methods can validate  that  the desigrz (but not 
the  implementation)  of  critical  algorithms in the  core 
engines  meet  certain  requirements.  We  employed 
formal  methods  to  validate  some  parts  of  the RA as 
feasibility  studies,  but it was  not  part  of  the  testing 
process.  Formal  methods  will need to  be part of any 
full-scale  testing  effort of  the Remote  Agent. 

Finally, we designed tools  to automatically  verify  RAX 
output.  One key tool  was  a  “flight-rule  checker”  that 
converted  the R A X  execution  traces into a  form  that 
could  be  checked by a DSI tool  for  verifying  that 
sequences  obey the flight  rules. 

Testing Amroach 

Autonomous  systems,  such  as  the RA, need to respond 
robustly in a  wide  range  of  situations.  Verifying  that 
they  respond  correctly in all situations would  require a 
huge  number of test cases.  To  make matters  worse, the 
tests  should  ideally be  run on  high-fidelity  testbeds, 
which are heavily oversubscribed, difficult to configure 
correctly,  and unable  to run faster than  real  time,  e.g., 
we  could run only 10 tests in four  weeks on one  of 
DSl’s high-fidelity  testbeds.  To  address  these 
problems, we  employed a ’baseline  testing’  approach to 
reduce the number of tests, and exploited  several lower- 
fidelity  testbeds  to  increase  the  number  of  tests  we 
could run7. 

We  tested  a  number of nominal  and  off-nominal 
variations  around  two  baselines.  The  variations 
comprised  variations in spacecraft  behavior  that  we 
might see  during  execution  and  changes  to  the baseline 
scenario  that  might be made prior to  execution. These 
included variations  to  the  goals in the mission  profile, 
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variations in when  faults  might occur, and  variations in with  low-fidelity simulators written  by the RAX team. 
the FSW responses. The medium  fidelity  platform was  the  'papabed', which 

The tests  were  distributed among  the low,  medium, and had  a  flight  CPU, bus, and  memory  and official DSI 

high  fidelity platforms.  The  two low-fidelity  platforms simulators.  The  highest-fidelity  platforms,  the 
'hotbench'  and 'DSI testbed', had flight  computers and 

were the Ibabybed' and Iradbed'. The babybed had a were connected  to  flight  spare  hardware  or engineering 
PowerPC CPU, and the  radbed,  a flight CPU. Both ran models where feasible (see Table ll. 

Table 1: DS1 Testbeds 

Platform 

Flight Rad6000 Highest Spacecraft 

Speed Availabilitv Hardware - CPU  Fidelity 

1 for DSl 1:1 

DSI Testbed 

1:l 1 for DSl Flight spares + DS1 sims Rad6000 High Hotbench 

1:l 1 for DSI Flight  spares + DSl sims Rad6000 High 

Papabed Med  Rad6000  DS1  simulators  only 1  for  DS1 1:l 

Radbed Low Rad6000 RAX simulators  only 

7: 1  2  for  RAX  RAX  simulators  only  PowerPC  Lowest PowerPC 

1:1 1  for  RAX 

The  architecture  of RA allowed us to run  certain tests 
on lower-fidelity  testbeds and  be confident  that  their 
results  would  hold on higher-fidelity  testbeds. 
Specifically,  the  RA  commands  and  monitors  the 
spacecraft  through  well-defined  interfaces  with  the 
FSW. Those interfaces were  the  same on all platforms, 
as were  the  range  of  possible  responses.  Only  the 
fidelity  of  the  responses  improved  with  platform 
fidelity.  This allowed us to  exercise  a  wide  range  of 
nominal and off-nominal  behaviors on the  babybeds 
and radbed,  test  the  most likely off-nominal  scenarios 
on  the papabed, and test  only the nominal  scenarios  and 
certain  performance  and  timing  related  tests  on 
hotbench and testbed. 

GROUND TOOLS 
The  primary  set  of  ground  tools  developed  to  assist 
operators during  the  RAX  experiment  was very  simple. 
Packetview, a  tclitk  based  GUI  was  the  basis  of  these 
tools and proved to be invaluable. It obtained the raw 
binary stream  from  the  Deep  Space  Network  (DSN), 
and  displayed it as legible text. During the course of  the 
flight  experiment  when  the DSl flight  team  needed 
exact  times  for  specific  events  known  to  have 
happened,  Packetview  computed  the  actual  spacecraft 
time  when  the  event  occurred  and  displayed  the  data 
along with relevant  timing  parameters. 

In addition  each  of  the RA modules had  ground tools 
which  were  crucial in providing  necessary  detail  during 
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the  course  of  the  experiment  to  us.  The  tools  are 
summarized  below. 

Ground Tool Modules 

ExecView provided an insight into the actual  execution 
of  the  plans  that  were  generated  onboard by showing 
the  status  of  the  spacecraft  timelines  that  the  Smart 
Executive was tracking. 

Stanley  gave  an  in-depth  view  of  the  Livingstone 
module by expanding  the  condensed  data in these 
messages in concert  with a ground-based  twin 

PSGraph is a  simple  tool  to visualize the state space of 
the  onboard  planner's  search by displaying  along an 
XY axis  the  set  of  nodes visited  against the depth of the 
node in the planners  depth  first  search tree. 

Tlm2email was an outreach  tool  and  successfully used 
in providing the  general public  with a view of what the 
spacecraft was doing  during the experiment. 

PredictedEvents would  parse  a  downlinked  plan 
generated on board and  provide RAX and  project  team 
members with  predictions on when specific events were 
to occur  for  purposes of tracking. 

FLIGHT EXPERIENCE 
This  section  describes  the  experience  of  executing  the 
flight demonstration'. Some  problems  surfaced  along 
the  way,  but  it  was  still  possible  to  achieve  all 
technology  validation  objectives.  Indeed,  the 
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unexpected problems allowed some  additional level of 
validation of  our capabilities. 

RAX Flight  Part 1 

On Monday,  May  17th,  1999,  at  1 I :04 am  PDT,  we 
received  a  telemetry  packet  that  confirmed  that  RAX 
scenario had started on DSI.  Shortly  thereafter,  the 
first plan was  generated  correctly, but  not before an 
unexpected circumstance created some apprehension in 
us. 

Telemetry  indicated that  the planner was generating the 
plan following  a  different  search  trajectory  than  what 
we had  observed in ground testing. Since the conditions 
on  the  spacecraft  were  practically identical to  those  on 
the ground  testbeds,  there was  no apparent  reason of for 
this  discrepancy. It turned  out that  the  spacecraft and 
papabed  differed on  the  contents  of  the  file  containing 
asteroid goals  and PS was  actually  solving a slightly 
different  problem than it had solved on the  ground! 
Thus,  this  unexpected  circumstance  allowed us to 
demonstrate that PS problem solving  was robust to last 
minute  changes in the  planning  goals,  increasing  the 
credibility of  the autonomy  demonstration. 

The 2 day  scenario  continued  smoothly  and 
uneventfully  with  a  simulated  switch  failure,  the 
resulting  replan,  long turns  to point  the camera at  target 
asteroids, optical navigation  imaging during  which no 
communication  with  DS1 was possible, and the start  of 
IPS thrusting. 

However,  around 7:OO am on Tuesday, May 18, 1999, it 
became  apparent  that  RAX  had  not  commanded 
termination  of  IPS  thrusting  as  expected.  Although 
plan  execution  appeared  to  be  blocked,  telemetry 
indicated  that  RAX  was  otherwise  healthy.  The 
spacecraft  too was healthy and in no  apparent  danger. 
The decision was  made  to use EXEC'S ability to handle 
low-level  commands  to  obtain  more  information 
regarding the  problem.  Once enough  information had 
been  gathered,  the  decision  was  made  to  stop  the 
experiment. By this time an estimated 70% of the  RAX 
validation  objectives had already been achieved. 

Trouhleshootinp and  Recovery 

By late  Tuesday  afternoon the  cause  of  the problem was 
identified  as a missing  critical  section in the  plan 
execution code. This  created a race condition between 
two  EXEC  threads. If the  wrong thread  won this race, a 
deadlock  condition would occur in which  each  thread 
was waiting  for an event from the other.  This is exactly 
what  happened in flight,  though it had  not occurred 
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even once in thousands  of previous  races on the  various 
ground  platforms.  The  occurrence  of this  problem at 
the  worst  possible  time  provides  strong  impetus  for 
research  on  formal  verification  of  flight  critical 
systems. Once  the  problem  was identified, a patch was 
quickly  generated  for  possible uplink. 

Following the discovery of  the problem, we generated a 
6-hour  RAX  scenario  to  demonstrate  the  remaining 
30% of  the RAX validation  objectives.  This  new 
scenario  was  designed,  implemented,  and  tested, 
together  with  the  patch,  on  papabed  overnight within 
about 10 hours.  This rapid turn  around allowed us to 
propose  a new experiment at the  DS1 project meeting 
on  Wednesday.  The DSl project  decided  to proceed 
with the new scenario.  However,  they  decided not to 
uplink the  patch,  citing  insufficient  testing to build 
adequate  confidence.  In  addition,  based  on  the 
experience on various ground testbeds, the likelihood of 
the  problem  recurring  during  the  6  hour  test  was 
deemed to be very low.  Nonetheless,  we developed  and 
tested a contingency procedure that  would  enable us to 
achieve  most  of  our  validation  objectives  even if the 
problem were to recur. 

The DSl project's  decision  not to uplink the patch is not 
surprising.  What  was  remarkable  was  their  ready 
acceptance  of  the new RAX  scenario.  This is yet more 
evidence  that  the DSl project  had  developed  a high 
level of  confidence in RA  and  its  ability  to run new 
mission  scenarios  in  response  to  changed 
circumstances.  Hence,  although  caused  by  an 
unfortunate  circumstance,  this rapid mission  redesign 
provided unexpected  validation for RA. 

RAX  Flipht Part 2 

The  6-hour  scenario  was  activated  Friday  morning. 
The  scenario ran well  until it was  time  to  start up the 
IPS. Unfortunately,  an  unexpected  problem in some 
supporting  software  failed  to  confirm an IPS state 
transition,  thus  causing RA to  (correctly)  stop 
commanding the IPS startup  sequence.  The underlying 
cause  of this  problem was still  under  investigation as of 
July 20, 1999.  Since this  situation was out of scope  for 
RAX,  the  resulting  RA  state  was  inconsistent  with 
spacecraft  state.  Fortunately,  the discrepancy  proved to 
be  benign. Hence,  RA  was  able  to  continue  executing 
the  rest of the  scenario  to  achieve  the  rest of its 
validation  objectives. 

By executing  the  two  flight  scenarios, RAX achieved 
100% of its validation  objectives. 

LESSONS  LEARNED 
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The RA team learned valuable lessons in a number of members  specialized in one  of the  PS, EXEC, and  MIR 
areas  including RA technology  and  processes,  tools, engines, and each  team  was  responsible  for  modeling 
communication,  and  even  autonomy  benefits  to all  spacecraft  subsystems  for  their  engine.  This 
missions. The  following  sections  delve  into  each  of horizontal organization  was  appropriate for RAX, since 
these  categories of lesson. it was  our first  major experience in modeling  spacecraft - 
Remote Amnt Technology 

Team  Structure  for RA Model Development: 

The 
engi~ 

R 
?e 

subsystems  for  flight.  Hence, it made  sense  for  engine 
experts to  do all modeling for their  engine. 

AX team  was  structured  horizontally  along 
boundaries.  See  Table 2. This  meant  that  team 

Table 2: Horizontal vs. Vertical  Team  Structure 

AX team  was  structured  horizontally  along 
boundaries.  See  Table 2. This  meant  that  team 

Table 2: Horizontal vs. Vertical  Team  Structure 

However,  this  organization  has  several  shortcomings. 
Perhaps  the  most  significant  shortcoming  was  that 
knowledge  of  any  one  spacecraft  subsystem  (e.g., 
attitude  control, ion propulsion,  MICAS  camera)  was 
distributed  across  the  three  teams;  one  needed 
discussions  with  three  individuals  to  get  a  complete 
understanding of how a  subsystem  was commanded by 
RA. 

Conclusions:  These  shortcomings  suggest  an  alternate 
structuring  for a future SW  team. Instead of  a horizontal 
structure,  teams  should be organized  vertically  along 
spacecraft  subsystem or  domain unit boundaries; e.g., a 
single  team  would be responsible  for  developing all 
models  for  the  attitude  control  system.  This  would 
ensure  internal  coherence  of  the  resulting  model. 
Furthermore, since  modelers would  need to understand 
how  to  use  all  three  engines,  they  can  make  well 
motivated decisions on how  best to model a subsystem 
to  exploit  the  strengths  of  each  engine  and  avoid 
information duplication. 

While  a  vertical  team  organization  has its benefits, 
certain aspects  of  model  development  intrinsically 
involve  managing  and  reasoning  about  global 
constraints,  e.g.,  power  allocation  strategies,  system- 
level fault  protection.  Hence, it is important to involve 
systems  engineers to develop  these  global  strategies. 

Model  Design,  Development and Test: 

One  of  the  biggest  challenges  we  faced  was  model 
validation. This  was particularly  true during validation 
testing, when even  small  changes in the  models had to 

6 

be carefully  and  laboriously  analyzed  and  tested  to 
ensure that there  were no unexpected  problems. In fact, 
in some  cases  we  chose  to  forgo  a model change, and 
instead  decided  to  institute  flight  rules  that  would 
preclude  the  situation  that  required  the model change 
from  arising. A related  issue was  that  methods  do  not 
yet  exist  to  characterize  RA's  expected  behavior in 
novel  situations.  This  made it difficult  to  precisely 
specify  the  boundaries  within  which  RAX  was 
guaranteed  to  act  correctly.  While  the  declarative 
nature  of  RA  models  was  certainly  very  helpful in 
ensuring the  correctness  of  models and  model changes, 
the  difficulty  stemmed  from  unexpected  interactions 
between  different  parts  of  the  model,  e.g.,  different 
parts of  the model may  have been  built under different, 
implicit,  conflicting  assumptions. 

Conclusion: The central  lesson we learned  here  was the 
need for  better  model  validation  tools.  For  example, 
the  automated  test  running  capability  we  developed 
proved to be enormously  helpful,  as it allowed us to 
quickly  evaluate  a  large  number  of  off-nominal 
scenarios.  However,  scenario  generation  and 
evaluation  of  test  results  were  time  consuming. In 
some  cases,  the  laborious  process  we  followed  to 
validate model changes  has  provided us with concrete 
ideas  for  developing  tools  that  would  dramatically 
simplify  certain  aspects  of  model  validation. 
Preliminary  work in the  area  of  formal  methods  for 
model  validation is also  very  promising. Finally, we 
need to  develop better methods  for characterizing RA's 
behavior  with a  specific  set  of models, both as a way of 
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validating those  models and as a way of explaining the 
models to a flight team. 

Robustness of  the Basic  System: 

Model  validation alone  does not  suffice; the rest of the 
system,  including the underlying  inference engines, the 
interfaces between  the  engines, and the  ground  tools, 
must all be robust. Given our  resource constraints, we 
made  the decision to  focus  our  formal  testing on model 
validation,  with engine  and interface testing  happening 
as a side  effect.  This  was  a  reasonable strategy: code 
that  has been unchanged  for years is likely to be  very 
robust if it has been used with a variety of  different 
models and scenarios.  However, newer code  does not 
come with the  same quality  assurance.  Furthermore, as 
the  deadlock  bug in flight  showed,  subtle  timing  bugs 
can lay hidden for  years  before  manifesting  themselves. 

Conclusion: The primary lesson is that the basic  system 
must be thoroughly  validated with a comprehensive  test 
plan as  well as formal  methods,  where  appropriate, 
prior to  model  development  and  flight  insertion. 
Interfaces  between  systems  must be clean  and  well 
specified,  with  automatic code generation  being used to 
generate  actual  interface  code,  telemetry,  model 
interfaces,  and  test cases;  code generation  proved to be 
enormously helpful in those  cases  where we did use it. 

On-Board Planning 

Since  the  beginning of R A ,  on-board  planning  has been 
the  autonomy  technology  that  most  challenges  the 
comfort  level  of  mission  operators.  Commanding  a 
spacecraft  with  high-level  goals  and  letting  it 
autonomously take detailed actions is very far from the 
traditional  commanding  approach  with  fixed-time 
sequences  of  low-level  commands.  We  believe  that 
during RAX the  flawless  demonstration  of  on-board 
planning has provided a powerful  existence  proof of the 
feasibility  of  the  approach.  Our  own  discomfort with 
the  discrepancy between tested  behavior and  in-flight 
behavior of PS during  RAX  was  a  surprising mirror of 
the objections of  the critics of autonomy. 

Conclusion: It is difficult  to  move past the  mindset  of 
expecting  complete predictability from  the behavior of 
an  autonomous  system.  However,  RAX  has 
demonstrated that  the paradigm shift is indeed possible. 
In the case of PS behavior  during  RAX,  point is not that 
the  combination  of  pictures  requested by NAV had 
never been experienced  before, but that  the  problem- 
solving  behavior that  the planner  used to  achieve  each 
individual  picture  goal  had  indeed  been  tested. 
Confidence in complex  autonomous  behaviors can be 
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built up from confidence in each  individual  component 
behavior. 

Design for  Testability 

System-level  testing is an  essential  step in flight 
preparation.  Designing  the  RA  to  simplify  and 
streamline system-level testing and analysis can enable 
more  extensive  testing,  thus  improving robustness. In 
RAX, system-level  testing  proved  to be cumbersome. 
The primary  reason for this was  the  absence of efficient 
tools  to  generate  new  mission  scenarios, so that all 
system  tests had to  be  variations  on  the  nominal 
scenarios. Hence,  to test a particular  variation,  one was 
forced to run a  nominal  scenario up to  the point of the 
variation,  e.g.,  testing  thruster  failures  during  turns 
required  at  least 6 hours,  since  the  first  turn  occurred 
about 6 hours into the  scenario.  (Check this example.) 
The  situation  was  further  complicated by the  fact  that 
RAX  real-time  telemetry  was not complete,  making it 
difficult  to  understand  all  aspects  of RA behavior 
without  viewing  the  more  complete  log  files  typically 
available  only  at the end of  the run. 

Conclusions:  The  difficulty  of  generating new  mission 
scenarios is easily  addressed: a graphical  tool allowing 
visual  inspection and  modification  of  mission profiles, 
as  well  as  constraint  checking  to  ensure  consistency, 
can  dramatically  simplify  the  construction  of  new 
mission  profiles.  Such a tool is now  being  constructed. 
Nonetheless, overall RA  validation is still  necessary to 
ensure that RA will properly  handle  each new  mission 
profile (see below). 

Remote Agent Processes 

A short  development  period,  scarce  resources,  and 
ambiguity  arising  from  the  research issues  inherent in 
the  technology  characterized  the  Remote  Agent 
development.  We learned  several  lessons in managing 
software  development  tasks  of  this  nature  that  the 
software  industry  has been re-learning for years. 

Prioritv of Obiectives 

Without a clear list of prioritized  objectives, we had no 
way  to  regain  schedule  margin by dropping  lower 
priority  objectives,  or  to  track  our  progress  against 
those  objectives. 

Conclusion:  establish  prioritized  objectives  from  the 
start and be  clear about  what  you  are willing to give  up. 

Early  Use of Target  Platform 

A number of problems  manifested  each time  we moved 
to  a  new  target  platform.  Since  we  moved to these 
platforms  very  late, the  problems  were critical  and we 
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were  limited  to  low-impact  work-arounds.  Many  of 
these  problems could have been detected by early  end- 
to-end  tests,  even  with a limited functionality  system. 
Early knowledge  of  these issues  may also have led to 
design  changes  that  would  have  addressed  the issues 
more  robustly  or  elegantly  than  the  eventual  work- 
arounds. 

Conclusion:  Use as few  platforms as possible, and  run 
end-to-end  tests  on  the  highest-fidelity  platforms as 
early as possible,  even  with a limited  functionality 
product. 

Remote  Agent Tools 

Systems  Engineering  Tools 

Coding  the  domain  models  required  substantial 
knowledge  acquisition,  which is a common  bottleneck 
in Artificial  Intelligence systems. It is better to  have  the 
domain  expert code  the models  directly. 

Conclusion:  Develop  tools  and  simplify  the  modeling 
languages  to  enable  spacecraft  experts  to  encode 
models  themselves.  Employ  tools  and  languages 
already  familiar  to  the  experts.  Organize  the  models 
around  the  domain  (Attitude  Control,  Power,  etc.) 
rather  than around  the RA technology  (planner,  exec, 
MIR). 

Mission Profile  Development 

The  RA is commanded by goals specified in a mission 
profile.  For the  experiment, constructing the profile was 
a “black  art”  that  only  one  or  two  people on the RA 
team  could  perform.  The  mission  planners  and 
operations  personnel  must be able  to  specify  goals 
themselves. 

Conclusion:  Simplify  specification  of  goals.  When 
possible,  use  approaches  already  familiar  to  mission 
planner, such as graphical  timeline  displays and  time- 
ordered  listings.  Provide  automated  consistency 
checking. 

Adaptabilitv to  Late Model  Changes 

The  spacecraft  requirements and operating  procedures 
change throughout development, and  even  after  launch. 
We  were  unable  to  encode  late  changes,  due  to  the 
regression-testing  overhead that each  change required. 

Conclusions:  The  validation  cost  of  model-changes 
must be reduced.  Some  possibilities  include  tools  to 
evaluate  the  consequences  of model changes on testing. 
The  models  already  support  localized  changes. 
Procedures  are needed to  uplink and  install just  those 
changes. 
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Ground Tools 

Ground tools  ought  to be developed well in advance of 
the actual  flight  and  be used as a primary means  to  test 
and  understand how  to  operate  complex systems.  Given 
the late date  of  development  of  most  of  the  ground 
tools, a good many  of  them  felt not well integrated. As 
a result  only the  tools  displaying  or interpreting  data in 
the most obvious way were  of high  value. 

Telemetry 

In addition to an on-board  textual log file  downlinked at 
the  end  of  the  experiment  or on request, RAX sent a 
stream  of  binary  telemetry  packets,  one  for  each 
significant  event,  that  were  displayed as color-coded 
text on the ground. Among  other  things,  the telemetry 
allowed us to  monitor all on-board  communication 
among  RAX  modules and  between RAX and the flight 
software.  This  proved  valuable in allowing us to 
quickly  diagnose  the  anomalies  that  occurred.  We 
immediately  knew  that  the reason RAX had  failed to 
turn off  the ion engine  was  that it had  stopped  executing 
the plan in some unanticipated manner;  we knew  RAX 
was still  running  and  could also rule  out a plan abort or 
a failure  to  send  just  one  command.  Similarly,  we 
immediately  narrowed  down  the  second  anomaly  to a 
monitor  message  that  was  either  not  sent  or  not 
received. 

Conclusion:  Ensuring  sufficient  visibility  on all 
platforms,  including in flight,  requires  adequate 
information in telemetry. The best  way to ensure  this is 
to  design  the  telemetry  early,  and  to  use it as the 
primary,  if  not  the  only,  way  of  debugging  and 
understanding  the  behavior  of  the  system  during 
integration,  test,  and  operations. 

Mission Benefits 

Next we  examine  the  future benefits of RA based on  the 
lessons  gained on DS 1 .  

Customer Engagement 

Until September  1998  the  RAX  design  team  was not 
able  to  engage  the  DSl  team in more  than  a limited 
manner. After  that  date,  the  engagement  was focussed 
on  issues  related  to  RAX  deployment  and  to 
demonstration of  RAX  safety with  respect to spacecraft 
health.  The  DS1  team  had  only  minimal  exposure  on 
the  functionality of the  RAX  technology.  As a 
consequence  the DSl flight  team  did not develop  an 
understanding  of  how  RAX  would  operate in various 
operational circumstances nor of  what benefits it could 
provide  for future missions. The  RAX team  consciously 
chose  the  strategy  of  “minimal  interaction”  from  the 
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beginning.  Indeed,  this  was the only  realistic option in a 
situation  where  the DSl team  was  under  extreme 
pressure to deliver  baseline  DS1  software  and  therefore 
could  afford  little distraction  from  their primary goal. 
Moreover, it was  thought  that  the demonstration of AI 
technology taking control of  the spacecraft  itself  would 
stimulate  interest in learning  more  about  the  inner 
workings of  the technology. This assumption  proven to 
be wrong  due to  the heavy  workload of  the DS1  team. 

RA  technology  therefore  missed  the  opportunity  to 
enlist  the  DSl  team  as  one  of its knowledgeable 
supporters.  After RAX, we  found  that  the  DSl  team 
still  has  a  number  of  basic  questions  regarding  RA, 
some no different now than  they were at the beginning 
of  the  mission. In conclusion,  although  supportive  of 
RAX,  most members of the DSl team  have not become 
knowledgeable  advocates  for the  RA technology. 

Conclusions:  future  similar  efforts should pay attention 
to  educate  the  customer in the  technology so that  the 
customer  can  become a user  and  supporter  of  the 
technology-and give  valuable  feedback  on  ways  to 
improve  it.  Understanding  and  support  from  the 
operational level (i.e.,  the  people  actually  developing 
and deploying  software) is important since it is at this 
level that  the impact  and  usefulness of the technology is 
directly  experienced.  Support  at  higher  levels  of  the 
mission  management  hierarchy  is  also  needed 
especially early in the process, in order  to  clarify  costs 
and trade-off  of  the  technology  with  respect  to  the 
overall goal of the  mission. 

Remote Agent vs.  Autonomy 

There has always been a tight  identification of the RA 
technology with “autonomy”.  For  example,  one of the 
most  highlighted aspects  of RA is its ability  to support 
“fail  operational”  even  outside  of  critical  mission 
phases  (e.g.,  orbital  insertion).  However,  one  could 
argue  that  the  largest  potential  benefit of RA is in 
directly  supporting  system  and  mission  engineering 
functions  with  formalized  languages  and  models  that 
can directly translate into  operational,  application  code. 
This is a  “process benefit”  and is quite independent of 
whether  or  not  the  resulting  flight  software 
functionality is highly autonomous or more traditional. 
It will also be important  to identify the  value  of using 
different RA components  to  solve localized problems 
faced by missions in an economically  viable  way. In 
fact,  the  decision  of  whether  to  adopt RA technology 
across  the board,  only for low-level  control or only  for 
the high-level observation  management is a  decision 
that  depends on the specific  costlbenefit  tradeoff  for  the 
mission. 
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Conclusions:  we  need  to  more  clearly  articulate  the 
value of this  technology  even if it is not used to achieve 
higher  levels  of  autonomy. RA technologies can  be 
used  individually or together  depending on the mission 
needs. 

Robustness of Model Based Design 

As  mission  lifetimes  becomes  shorter  and  mission 
objectives  become  more  ambitious, it is less  and  less 
likely  that  an  accurate  model  of  each  spacecraft 
component  will be available  early in the  flight  and 
ground  software  development  cycle.  Dealing with this 
uncertainty is a  major  problem  facing  future missions. 
By emphasizing  qualitative  and  high-level  models  of 
behavior RA can  help solve  this  dilemma. Qualitative, 
high-level models can  be captured  early in the mission 
lifetime and should  need only minor  adjustments  when 
the  hardware is better  understood.  Our  experience  on 
RAX  essentially  confirms  this  hypothesis.  Initial 
spacecraft  models  used  by PS, EXEC  and  MIR  were 
built  early in the DSI mission,  before  April 1997. 
During the  following  year  and  a  half,  EXEC and MIR 
models did not  change  and  the PS model  was  only 
changed in order  to  support  more  efficient  problem 
solving by the search  engine, not in order to reflect new 
knowledge  of  the  spacecraft  behavior. In the last  phase 
of  the  experiment  preparation,  when  communications 
between  the  RAX  team  and  the  DSl  team  resumed, 
adjustments  were  needed  to  finalize  the  interface 
between  the  low-level  EXEC  primitives  and  flight 
software. 

Conclusion:  Contrary  to  much  concern,  the  type  of 
qualitative, high-level models used  by the RA requires 
little tuning  throughout  the  project.  The usefulness of 
the  models  for  software  development  has  been 
validated. 

Uncertainty Handling 

A precise  characterization  of  how  RA  deals  with 
uncertainty,  however,  requires  additional  work. At the 
start  of  RAX  development  we  believed  that  RA  was 
particularly suited  to  operate robustly  under  conditions 
that had not been explicitly  tested.  However,  during 
development we discovered  that,  particularly in the case 
of PS, new scenarios  sometimes  highlighted  flaws in 
the problem  solving strategy.  What usually  happened is 
that,  although in principle PS could  solve  the new 
problem  (i.e., PS search  was  complete), in practice it 
could  not  always  do so within  the  performance 
requirements of  RAX,  such as timing and  memory,  and 
therefore  needed to be  modified. 
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Based on our experience,  we believe that robustness to 
uncertainty  could  be  better  characterized  as the ability 
to  operate  according  to  specifications  within  the 
boundaries of validated  capabilities.  It is important that 
the  boundaries  of  the  validated  capabilities  be 
established in advance  through  formal  validation  or 
extensive  testing. We  believe that  characterizing  these 
boundaries  without  full  path  testing  (which  is 
impossible  for  typical  applications  of  RA) is an 
important  research  and  development  goal  for RA 
technology. 

It  is possible that  sometimes RA will have  to operate in 
conditions  that  have  not been  fully validated. In this 
case it will  be  important for  the overall  fault  protection 
system  to  appropriately  monitor  the  behavior  of  RA 
while guaranteeing  the  safety  of  the controlled system. 
When using RA in the  context  of  a  mission,  system 
engineering,  fault  protection  and  mission  engineering 
will  have  to  identify  which  autonomous  behavior 
should be guaranteed  and  which  may not. This selection 
will have  to be  guided by the  goals  of  a  mission,  the 
level  of  threat  to  system  health  posed by the 
environment,  and  the  acceptable  levels  of  system 
performance in different  phases (e.g., launch  and  check 
out,  cruise,  encounter,  landing). 

Conclusion:  Remote  Agent’s formal declarative  models 
can facilitate  the identification of  classes  of validated 
conditions  under which RA performance is guaranteed. 
Outside  the  validated  boundaries  RA  may  sometimes 
fail to operate  within performance limits  and we should 
rely on good fault  protection  design to  guarantee  a  safe 
continuation of  the mission. 

FUTURE WORK 
Future  work  regarding  Remote  Agent can be  divided 
into three  categories: fundamental  improvements in the 
capabilities  of  its  components,  improvements in 
usabi l i ty   o r   deployabi l i ty ,   and   upcoming 
demonstrations or applications. 

A  number  of  basic  research  areas  are  being  pursued 
improve future iterations of  Remote  Agent. Contingent 
planning  and  diagnostic  ambiguity  are  just  two 
examples.  Contingent  planning  enables  a  planner  to 
create a plan with branches that may  be  taken if any of 
a  range  of likely events  occur,  reducing  the need to 
replan.  Improved  handling  of  uncertainty  will  allow 
Livingstone  to  better  track  multiple  ambiguous 
trajectories  the  system  may  be  following  and 
recommend actions  that  are  safe and goal-directed  even 
though  the  system is in one of several  possible  states. 
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Applying Remote  Agent  to  the Deep  Space 1 spacecraft 
provided a  wealth  of  practical lessons  about  what was 
needed  to  create  a  sustainable  autonomy  engineering 
process  and make  this  technology  usable for  main-line 
mission  development  and  operations.  The  Remote 
Agent  team is now  developing  tools  for  graphically 
creating  and debugging models, for  automating much of 
the integration of  Remote  Agent  with traditional flight 
software,  and  for  allowing  humans and autonomous 
software  to  interact  more  easily.  The  team is 
collaborating with software  verification  researchers  at 
NASA  Ames  Research  Center  and  Carnegie-Mellon 
University to allow  certain Remote  Agent  models  to be 
analyzed  to  prove  they  cannot  recommend undesired 
behavior.  The  components  are  also in the  process  of 
being  ported  from Lisp  to  C++  to fit  more  seamlessly 
fit  into  flight  environments,  with  the  planner  and 
Livingstone  having  achieved  significant  milestones in 
their  ports. In short  these  research  and  development 
efforts  are  designed  to  make  the  Remote  Agent and 
similar  technologies  more  capable,  easier  to  use, and 
easier to test  and  validate. 

Remote  Agent  technology is successfully  being 
transferred  beyond the original  team and several  groups 
are currently  building prototypes with Remote  Agent in 
order to evaluate it. At NASA’s Kennedy  Space  Center, 
Remote  Agent  applications  are  being  developed  to 
evaluate RA for  missions  involving in-situ propellant 
production  on  Mars  on  the 2003 lander  or  a  future 
piloted mission.  Applications  for  shuttle operations  are 
being  pursued  as  well.  At  the  Jet  Propulsion 
Laboratory,  Remote  Agent  is  being  evaluated as the 
baseline autonomy  architecture  for  the Origins Program 
Interferometry Instruments  and is being used in the JPL 
interferometry  testbed. The  New Millennium  Program’s 
Deep  Space  Three, a space-based  interferometry 
mission  which  includes  two  or  three  spacecraft 
cooperating  to  take  science  observations, may  be one 
early  customer  of this development.  At Johnson Space 
Center,  components  of  Remote  Agent  are  being 
integrated into an ecological life support  testbed  for 
human  missions  beyond  Earth  orbit.  At  Ames  Research 
Center, Remote  Agent  technology is being  incorporated 
into software  for  more  robustly  controlling  planetary 
rovers.  Working  with  Orbital  Sciences  Corporation, 
Ames is working  to  demonstrate  Remote  Agent  as it 
applies to  streamlining  the  checkout  and operation of a 
reusable  launch  vehicle. This demonstration  will  fly on 
the X-34 vehicle. 

SUMMARY 
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With the  successful  conclusion of the  Remote  Agent 
Experiment,  we've  taken a major  step  on  the path to 
highly autonomous  spacecraft. In addition  to  the end 
product,  Remote  Agent,  the  process of developing, 
deploying  and  demonstrating  such a system on Deep 
Space  One  has also had an  invaluable  technological 
impact.  For  technology  providers, it has  provided 
valuable  lessons  about  the  critical issues for  injecting 
autonomy  technology into the  NASA  enterprises.  For 
the  NASA  enterprises, it provided additional  exposure 
to  the  concept  of  model-based  and  goal-directed 
operations  for  future  NASA  missions.  The  lessons 
learned  will allow us to  improve  the  technology,  our 
processes, and perhaps most importantly, our approach 
to  technology  infusion. In short,  the  hope is that  the 
experience  and  lessons  learned  during  the  Remote 
Agent  Experiment  will  serve as the  thin  end  of  the 
wedge as far as the  maturation  and  deployment  of 
autonomy  technology in aerospace  applications  is 
concerned. 
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